Building / coaching k4 Octavian Ispas

What we need?

W	/K4	MK4										
500M TIME	SPEED	500M TIME	SPEED									
1.29	20,22	1.16	23.68									
1.30	20	1.17	23,38									
1.31	19.78	1.18	23.08									
1.32	19.57	1.19	22.78									
1.33	19.35	1.20	22,5									

Top speed

- MK4 27 kmh
- WK4 23kmh

Target speed 250 m

- MK4 24,5 kmh stroke 135
- WK4 21,5 kmh stroke 125/130

Competition tactics

- Maintaining speed /uniform race
- Top speed and loss of speed
- Return to speed / up speed / negative race

Results WK4 500 m

Building k4 main dictions

- Specific technique for k4
- Settling in the boat
- Building the pace / periodization

Specific in technique for k4

Set in front calm

- Lock the blade with upper hand
- Weight on the blade
- Pull quik after catch not before
- Drive with trunk and connect the leg (press footrest)
- Padeling vertical /positive ungle
- Longe pull
- Fast exit
- Recovery in font before catch

For k4 and in general I do not agree with :

- Fast set up / aggressive down to the catch
- Hit the water
- Kick the footrest
- Overusing the footstrap /jump to forward
- Jump with hip in the seat for "drive with the hip "
- End a effort before extract /exit the paddle
- Padeling early with negative ungle
- over forward rotation of the shoulder which leads to the change of angle and the coverage of the paddle

Characteristics for positioning in the k4

	Front		2 nd position		3th position		4 th position
*	Very intelligent	•	Very intelligent	0	Stronger in the		Very good
*	Good pace	•	Assistant coach		power		technique
*	Very good	•	Sense of water	0	Good ritm	-	Strong catch
	lactate	•	Decide change			-	Quigly and long
	tolerance		the pace and				padeling
*	Speed qualities		help front				simultan
*	The sense of	•	Catch little			-	Speed qualities
	water		before front			-	Excellent
			seat				connection
		•	Good power to				with the boat
			push the boat				

Block periodization - Explanation

For several years I've been using a block periodization method to accomplish goals. Block periodization is an idea I've generalized from European weightlifting implemnt and development of <u>Vladimir Issurin</u>

Block parts divide :

- Accumulation: basic motor/ technical abilities, aerobic endurance (necessary to combat stress hormones post competition).
- **Transmutation:** specific motor/ technical abilities, anaerobic endurance, specific endurance, technical well controlled work. Here the athlete will be fatigued, so the mesocycle must be short- **3 weeks is optimal.**
- **Realisation:** Tapering, <u>full restoration</u>. speed. This part should not be longer than 2 weeks.
- *Restoration*:

This phase affords a planned recovery period to allow mental and physical recharging. Restoration phases often follow Transmutation cycles, but can be introduced at any time. Scheduled Restoration phases refresh focus, combat burnout, and prevent fatigue.

This would then be repeated throughout the year depending on the competition schedule.

Superposition of Residual Training Effects – Timing

TRAINING PROGRAM OVERVIEW 2024

Month	00	CTUE	BER	Г	NOV	EMBE	R	Г	DE	CEN	EMBER IANUARY					FEBRUARY				MARCH					APRIL				Г	Μ	IAY		Г		JUN	E		Г	JULY				- (AUG	UST	Т	М	
Data	9 -	16	- 23	- 30	6 -	13 -	20 -	27 -	4 -	11 -	18 -	25 -	1 -	8 -	16 -	22 -	29 -	5 -	12 -	19 -	26 -	4 -	11 -	18 -	25 -	1+	8 -	15 -	22 -	29 -	6 -	13 -	20 -	27 -	3 -	10 -	17 -	24 -	1-	8 •	16 -	22 -	29 -	5 -	12 -	19 - 2	<u>/</u> 6 -	D
Date	15	22	2 29	5	12	19	26		3 10	1	7 2	9 3	1	7 14	21	28	4	11	18	25	3	10	17	24	31	7	14	21	28	25	12	19	26	3 2	2 5	16	23	30	7	14	21	28	4	11	18	25	3	
EVENT																													sel		WC1		wc2	1		EU								og		WCHAM	NC2	EVEN
PLACE		(OSLO			INDIAN	HABOUR	RFLOR	IDA	Г	OSLO /OLT					1	SU	ECA		OSLO	L <mark>O</mark> GUATAPE/COLUMBIA OSLO			SUECA OS			ISLO	82EG	þ	ARI	RUNGEN SZEG			DVAL S	SENALE	S/ITALY	AEUNGEN /TYSVAR				PARIS			PARIS	PLAC			
BLOCK					BLOCK	(1				BLOCK 2								ŧ	BLOCK	3						BLOCK 4								BLOCK 5			Γ		BLOCK6									1
W. NR	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	1	0	0	W.NR
			- 110	A	cumulat	ion 1				Г	Ä	cumula	ition 1					acumu	latin 1/2			aci	mulatic	on 2		110	inemute	illon		realizatio	on	acum	ulation	2 transm	nutatuin			ic 2	tra	nemule	ton	,	ealizatio	n			Т	
мсс				buildi	ng pace	aerobic				xc	SKI AEI	ROB GE	INERAL	IERAL / GYM POWER SPEED				threstho	ld	vo2 mao	ao rec pov		power pace building rec			pace k2		ТА	TAPING QUA		JALIF AEROB		PACE 500		COM			ACE DEV RACE SPEEL		SPEED	D TAPING		COMP		(COMP	мсс	
		#	T	#	Г	#		#		F		Г	Т		П			Г			_												1		1			Г										
CORE	12	14	10	10	7	7	7		3	3	3	3	3	1/3	3	3	3	3	6	6	4	4	4	4	4	4	6	3	3	4	4	3	3	5	5	5	5	5	BLOC	5	3	3	3		4	1	2	COLE
THR	2	4	8	8	3	3	3	3	3	3	3	3	3	5				3	3	3	5	5	3				5	2	4					5	5	1'	`1	1	5	5	1	1	1	1	1			THF
									_	L	_		-			_	_				_			_			_				_				_					_	-					_		_
VO2	_				3	4	4			L					3	3	3							3	3	3		2				1	1			2	2	2			1	1	1					VO2
т	_		+	-	-	-	+	-	-	┢		+	+	-		-	_	-	-	-	_	_	-	-	-	-	-	-	-	1	1	⊢	2	+	-	1	1	1	-	-	1	1	1	-	-		╉	TI
	_	-	+	-	-		-	-	-	⊢		z	+	-		-	-			-	_	_	-			-		-			Ľ	_	4	-	-	4	Ľ	Ľ	-	-		ŀ	÷	_		-	-	1
SPEED		t	T			ĺ.	İ.	İ.		t		ĺ.		İ.								1	1	1	1	1	1		2	1	2	2		2	2	2			2	2	1	1	1	3	3		1	SPE
	_		1																		_					-								Г			F											_
P500	_		-		-		1		-	t	1	T		-		-				-	-	-	-	-						2	2	2	4	N.	N.	2	2	2	-		2	2	2	3	3		4	P50
	_	-	+	-	-		-	-	-		÷		+	-		-	-			-	-		-	-								1		Ē					-				-					
BP500	_		-	-	-	-	-	+	-	┢		+	-	-	2	2	2				-	1	1	2	2	2	-	-	-	-	-			-	+	-					_	-	-	-		-	╉	BP5
										L																																						
BB /	2	2	2	4	2	3	5	1	4	4	1	2	2	2		_		4	2	2	3	2	1	1	1	1					_		1	2	2				2	2	_			_			4	BB
FRGO	-		-	-	-	-	\vdash	4	4	4	4	4	4	4			_	4	3	5	3	4		1	1	1	-	-	-	+	-	-	-	-	-	-	⊢	-	-	-	-	-	-	-		-	╉	ED
ERGU	_		-	-	-	-	-	-	+								_	-	-	_					_	-		-	-	-	-	_	_	-	-	-	⊢	-	┝	-	-	-	-	_		_	_	
STR	12rp	12	p																			533	5332	2	5x4	5x4	4x4			5x3	5x3	4x3		6x8	6x8	6x6	644	2644	2.5333	2.533	2:6442	2:533	3 5332	5x3	5x3			STF
																_						-	_						-						-													

ACUMULATION 1 aeobic pace

• GOALs:

- 1. Development AEROBIC METABOLISM
- Core endurance
- Threshold
- 2. Development- Anaerobic metabolism
- Pack speed maxim speed
- 3. Gym main goal Strength :
- Hypertrophy 70%
- Power 80-95%

AEROB METABOLISM – CORE ENDURANCE

- GENERAL ENDURANCE
- General improvements to aerobic system.
- Technique foundation
- ✤ Heart rate : 140
- Test distance :+10km
- ✤ Maxim training :60min
- Lactate 1-2 ml/l
- Stroke rate :
 - □ Kayak men's : 60+/- 5
 - □ Kayak women :60 +/- 5
 - **Canoe** :30

- Exercises :
- > 1x10km
- ≥ 2-3 x30'/4'r
- ≻ 3-5x 20'/4'r
- > 4x 15'/3'r
- ➢ 1-2x8km/4'
- ▶ 1-2 x 6km /4'

AEROB METABOLISM-threshold

SPECIFIC AEROBIC CONDITIONING Higher intensity of aerobic improvement Maximum blood flow and vascular system development

Heart rate : 160 Test distance :5km Maxim training :15min Lactate 4-6ml/l Stroke rate : Kayak men's : 65/75 Kayak women :65/75 Canoe :40

Exercises 1-2 x 4km /3 ' 2-8 x 2km /3' 2-3x(3x 1000m/1')10 10X5'/2'10-16x4'/2' 10-16x3'/1 **1X** 9'/1'+8'/1+7'/1'+6"/1+5'/1'+4'/1'+3'/1'+2 '/1+1 6x 8'/2'6x5'/1+8x4'/1+ 10x3/1'

ACUMULATION 2 building pace

GOALS:

- 1. Development mixt metabolism
- Core power
- Sub race pace/ vo2 max
- 2. Threshold mantenece
- 3. Development- Anaerobic metabolism
- maxim speed
- 3. Gym main goal Strength :
- > Hypertrophy 70%
- Power endurance 40/60%

Mixed metabolism-under RACE PACE

- AEROBIC POWER
- VO2max hight level maxim consume of oxygen
- Increse lactate tolerance anaerobic metabolism
- Heart rate : 180
- Test distance :2000
- Maxim training :8min
- Lactate 6-8ml/l
- Stroke rate :
 - □ Kayak men's : 100
 - □ Kayak women :80+ 5
 - □ Canoe :50 +/-5

- Exercises
- ▶ 4-8x 1000m /3'
- > 3-6 x 1500/4'
- > 1-2 x (10x2'/1')4'
- > $4-6 \times (3'/1'+1'/1'+3'/1'+1')/4'$
- 1-2 x 2000m maxim pace /5'
- > 2-3x(3x500m/1')7'
- > 1-2 x (4'/2'+4x1'/1'+4'/2'+4x45''/1'+4'/2'+4x30''/1'+4x2'+4x15''/1'+4'

Mixed metabolism-LONG SPRINT

- MAXIMUM O2 DEBIT HIGH ACID LACTIC ACULULATION
- HIGH WORK RATE
- Heart rate : max
- Test distance :750-1000m
- Maxim training :4min
- Lactate +14ml/l
- Stroke rate :
- Kayak men's : 115
- □ Kayak women :100
- □ Canoe :60

Exercises 2-3 X (1'/1'+1'/50"+1'/40"+1'/30"+1'/20"+1'/10" +1)7'3-4 X (15"/15"+30"/30"+45"/45"+1'/1'+45"/45" +30"/30"+15"/15") 2-4 x (100m+800m+100m) 5' 3-6 x (100m+300m+100m)5' 2-3 X1000m max 2-4 x 750m max 2-4x 600m max $2-4 \times (4 \times 250 \text{ m/2}^{2})$

TRANSMUTATION : main pace

GOAL:

- 1. Development MIXED METABOLISM
 - race pace
 - Long sprint –lactic accumulation
 - 2. Development- Anaerobic metabolism
 - Short sprint- anaerobic power
 - 3. Gym main goal Strength :
 - Power endurance 60%
 - Dynamic strength 30%

Mixed metabolism-MEAN SPRINT

- ANAEROB CAPACITY
- MAXIMUM O2 DEBIT
- HIGH ACID LACTIC
 ACULULATION
- HIGH WORK RATE
- Heart rate : max
- Test distance :500m
- Maxim training : 90 '
- Lactate +16ml/l
- Stroke rate :
- □ Kayak men's : 130-
- □ Kayak women :120
- □ Canoe :70

- Exercises
- ➢ 4X (4X150m/2')5'
- ≽ 6-8x 300m/5'
- > 4-5x350m/5'
- ≽ 3-6x400m/5'
- 2-3x(4x 250m/5') 10'
- ≽ 6x200m/2'
- ➢ 3-4x (10x 10"/10")6'
- ▶ 2-4 x (10x20"/20")6'
- 6-8 x1'/1 /5' 6-8x 45"/75" 6-8 x30/90"

- GOAL:
- 1. Taping
 - Race model
 - Short sprint
 - > Threshold and core endurance for keep the technique

- 2. Gym strength
- Power 80% maintenance

Anaerobic metabolism-SHORT SPRINT

- ANAEROBIC POWER
- FULLY EXHAUSTED A ANAEROBIC SUBSTANCE IN THE MUSCLE – ATP – CP
- Heart rate : max
- Test distance :200m
- ✤ Maxim training : 40 '
- Lactate +12ml/l
- Stroke rate :
 - □ Kayak men's : 160-
 - □ Kayak women :140
 - **Canoe** :80

- Exercises
- ➢ 4X(3X100m/1') 5'
- ➢ 6X150m
- 6-16 x100m/paddle back
- 6-12 x125m /paddle back
- 1-3 x200m maxim
- > 30x 12"/48" with rezistance
- 4x50m stop start + 4x 150m runing
- 4x75m stop start +4x 125 m running start

Anaerobic metabolism-PEACK SPEED

- MAXIMUM SPEED LEVEL
 FATS AND POWERFUL BUT PHYSIOLOGICAL CONFORTABLE
- Heart rate : no
- Test distance :75m
- Maxim training : 15 *
- Lactate : no
- Stroke rate :
 - □ Kayak men's : +170-
 - □ Kayak women :+145
 - □ Canoe :+85

- Exercises
- Short strats 5-12m
- ▶ 10-30x 50m
- ➢ 6-12x75m
- Acceleration o-25m
- Running start 25m x 6-10
- Running start 50m x 6-10

Active recovery use more exercises from core endurance zone .

Accumulation 1

- Number of sessions 1-2 a week
- Technique and connection exercises 1/2/3 stroke and keep balace

Bulding k4

Acumulation 2

- Number of session maxim 3
- Short intervals with long recovery
- Focus in power speed with lower strock in kı

Typical session 4x 150m/ev 2 min individual count of the Catch stroke

• Using a lot of exercises in the one arm ; Power Hous Catch Force etc , usual around 120 repetition/one hand

Building k4

Transformation

- Number of session a week with maxim 4 when have 1 high lactate and 3 speed or technique
- Focus in speed per stroke 3 set 6x 20s/ 40 sec stroke 100/105 avg maxim speed 21.5 to 22kmh
- Heavy session in k1 with stroke/speed control
- Compensation /recovery sessions in kı

Bulding k4

Realization /taping

- Focus/practice starts with block start
- Repeating the transition phase from high stroke when the boat has reached maximum speed to stroke controlled and maintaining the speed of the boat
- Full recovery after repetition and active recovery after sessions

Microcycle

- Microcycle is probably the most **important tool** in the planning of training.
- Microcycle is a group of **several training units**.

Microcycle in the accumulation block

work

Microcycle in the transformation block

work

Microcycle in the taping block

work

Questions?

•? •? •?